四年級奧數(shù)基礎(chǔ)第三十講 抽屜原理(二)
來源:大連奧數(shù)網(wǎng)整理 2012-03-12 14:19:01
四年級奧數(shù)基礎(chǔ)第三十講 抽屜原理(二)
這一講我們講抽屜原理的另一種情況。先看一個(gè)例子:如果將13只鴿子放進(jìn)6只鴿籠里,那么至少有一只籠子要放3只或更多的鴿子。道理很簡單。如果每只鴿籠里只放2只鴿子,6只鴿籠共放12只鴿子。剩下的一只鴿子無論放入哪只鴿籠里,總有一只鴿籠放了3只鴿子。這個(gè)例子所體現(xiàn)的數(shù)學(xué)思想,就是下面的抽屜原理2。
抽屜原理2:將多于m×n件的物品任意放到n個(gè)抽屜中,那么至少有一個(gè)抽屜中的物品的件數(shù)不少于m+1。
說明這一原理是不難的。假定這n個(gè)抽屜中,每一個(gè)抽屜內(nèi)的物品都不到(m+1)件,即每個(gè)抽屜里的物品都不多于m件,這樣,n個(gè)抽屜中可放物品的總數(shù)就不會超過m×n件。這與多于m×n件物品的假設(shè)相矛盾。這說明一開始的假定不能成立。所以至少有一個(gè)抽屜中物品的件數(shù)不少于m+1。
從最不利原則也可以說明抽屜原理2。為了使抽屜中的物品不少于(m+1)件,最不利的情況就是n個(gè)抽屜中每個(gè)都放入m件物品,共放入(m×n)件物品,此時(shí)再放入1件物品,無論放入哪個(gè)抽屜,都至少有一個(gè)抽屜不少于(m+1)件物品。這就說明了抽屜原理2。
不難看出,當(dāng)m=1時(shí),抽屜原理2就轉(zhuǎn)化為抽屜原理1。即抽屜原理2是抽屜原理1的推廣。
例1某幼兒班有40名小朋友,現(xiàn)有各種玩具122件,把這些玩具全部分給小朋友,是否會有小朋友得到4件或4件以上的玩具?
分析與解:將40名小朋友看成40個(gè)抽屜。今有玩具122件,122=3×40+2。應(yīng)用抽屜原理2,取n=40,m=3,立即知道:至少有一個(gè)抽屜中放有4件或4件以上的玩具。也就是說,至少會有一個(gè)小朋友得到4件或4件以上的玩具。
例2一個(gè)布袋中有40塊相同的木塊,其中編上號碼1,2,3,4的各有10塊。問:一次至少要取出多少木塊,才能保證其中至少有3塊號碼相同的木塊?
分析與解:將1,2,3,4四種號碼看成4個(gè)抽屜。要保證有一個(gè)抽屜中至少有3件物品,根據(jù)抽屜原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9塊木塊,才能保證其中有3塊號碼相同的木塊。
例3六年級有100名學(xué)生,他們都訂閱甲、乙、丙三種雜志中的一種、二種或三種。問:至少有多少名學(xué)生訂閱的雜志種類相同?
分析與解:首先應(yīng)當(dāng)弄清訂閱雜志的種類共有多少種不同的情況。
訂一種雜志有:訂甲、訂乙、訂丙3種情況;
訂二種雜志有:訂甲乙、訂乙丙、訂丙甲3種情況;
訂三種雜志有:訂甲乙丙1種情況。
總共有3+3+1=7(種)訂閱方法。我們將這7種訂法看成是7個(gè)“抽屜”,把100名學(xué)生看作100件物品。因?yàn)?00=14×7+2。根據(jù)抽屜原理2,至少有14+1=15(人)所訂閱的報(bào)刊種類是相同的。
相關(guān)閱讀:
四年級奧數(shù)基礎(chǔ)第二十九講:抽屜原理(一)